2,560 research outputs found

    Monte Carlo studies on the sensitivity of the HEGRA imaging atmospheric Cerenkov telescope system in observations of extended gamma-ray sources

    Full text link
    In this paper, we present the results of Monte Carlo simulations of atmospheric showers induced by diffuse gamma rays as detected by the high-energy gamma ray astronomy (HEGRA) system of five imaging atmospheric Cerenkov telescopes (IACTs). We have investigated the sensitivity of observations on extended gamma ray emission over the entire field of view of the instrument. We discuss a technique to search for extended gamma ray sources within the field of view of the instrument. We give estimates for HEGRA sensitivity of observations on extended TeV gamma ray sources.Comment: 21 pages, 7 figures, accepted for publication in "Journal of Physics G: Nuclear and Particle Physics

    Anisotropic charge dynamics in detwinned Ba(Fe1−x_{1-x}Cox_x)2_2As2_2

    Full text link
    We investigate the optical conductivity as a function of temperature with light polarized along the in-plane orthorhombic aa- and bb-axes of Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 for xx=0 and 2.5%\% under uniaxial pressure. The charge dynamics at low frequencies on these detwinned, single domain compounds tracks the anisotropic dcdc transport properties across their structural and magnetic phase transitions. Our findings allow us to estimate the dichroism, which extends to relatively high frequencies. These results are consistent with a scenario in which orbital order plays a significant role in the tetragonal-to-orthorhombic structural transition

    Charge dynamics of the Co-doped BaFe2_2As2_2

    Full text link
    We report on a thorough optical investigation over a broad spectral range and as a function of temperature of the charge dynamics in Ba(Cox_xFe1−x_{1-x})2_2As2_2 compounds for Co-doping ranging between 0 and 18%. For the parent compound as well as for xx=0.025 we observe the opening of a pseudogap, due to the spin-density-wave phase transition and inducing a reshuffling of spectral weight from low to high frequencies. For compounds with 0.051≤x≤\le x \le 0.11 we detect the superconducting gap, while at xx=0.18 the material stays metallic at all temperatures. We describe the effective metallic contribution to the optical conductivity with two Drude terms, representing the combination of a coherent and incoherent component, and extract the respective scattering rates. We establish that the dcdc transport properties in the normal phase are dominated by the coherent Drude term for 0≤x≤\le x \le0.051 and by the incoherent one for 0.061≤x≤\le x \le0.18, respectively. Finally through spectral weight arguments, we give clear-cut evidence for moderate electronic correlations for 0≤x≤\le x \le0.061, which then crossover to values appropriate for a regime of weak interacting and nearly-free electron metals for x≥x\ge0.11

    PIXE and ToF-SIMS analysis of streaker samplers filters

    Get PDF
    This paper presents methodological innovations introduced in the characterisation of urban aerosol collected in Italy in a recent campaign. Two complementary ion beam analysis (IBA) techniques were used to analyse Nuclepore filters used in continuous streaker samplers to collect airborne particles in four Italian towns. Na to Pb elemental concentrations were obtained by particle induced X-ray emission (PIXE), while time of flight secondary ion mass spectrometry (ToF-SIMS) produced, on the same samples, time trends for several elements and molecular fragments. In addition, light attenuation measurements were used as a tracer for black carbon. The data produced by these three techniques was merged into a unique data set to address the characterisation of particulate matter sources. Correlations between elemental concentration trends (PIXE) and relative trends for molecular fragments (ToF-SIMS) and black carbon (light attenuation) have been studied by cluster and principal component analysis

    Theoretical Investigation of Optical Conductivity in Ba [Fe(1-x)Co(x)]2 As2

    Full text link
    We report on theoretical calculations of the optical conductivity of Ba [Fe(1-x)Co(x)]2 As2, as obtained from density functional theory within the full potential LAPW method. A thorough comparison with experiment shows that we are able to reproduce most of the observed experimental features, in particular a magnetic peak located at about 0.2 eV which we ascribe to antiferromagnetic ordered magnetic stripes. We also predict a large in-plane anisotropy of this feature, which agrees very well with measurements on detwinned crystals. The effect of Co doping as well as the dependence of plasma frequency on the magnetic order is also investigated
    • …
    corecore